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We demonstrate that strong interorbital interaction is very efficient to achieve superconductivity due to
magnetic fluctuations in the iron pnictides. Fermi-surface states that are coupled by the antiferromagnetic wave
vector are often of different orbital nature, causing pair-hopping interactions between distinct Fe-3d orbitals to
become important. Performing a self-consistent fluctuation exchange calculation below Tc we determine the
superconducting order parameter as function of intra- and interorbital couplings. We find an s�-pairing state
with Tc�80 K for realistic parameters.
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High superconducting transition temperatures and prox-
imity to antiferromagnetic order strongly suggest an elec-
tronic pairing mechanism in the FeAs systems.1 The vicinity
to a spin-density wave instability with paramagnons as domi-
nant collective mode is key for spin-fluctuation-induced su-
perconductivity, where pairing is the result of paramagnon
exchange. However, superconductivity in the iron pnictides
occurs not only in the immediate vicinity of the magnetically
ordered state and the viability of spin-fluctuation-induced
pairing becomes an issue that requires a quantitative analy-
sis. In addition, multiorbital effects of the Fe-3d bands with a
filling of approximately six electrons per Fe site add to
the complexity of these systems. Electronic structure
calculations2,3 yield two sets of Fermi-surface sheets: one
around the center of the Brillouin zone �� point� and the
other around the M point, shifted from � by the magnetic
ordering vector Q.4 Interband scattering of electrons has
been proposed to lead to unconventional pairing.3,5–13 While
for certain parameters other solutions exist,9,10,13 interband
coupling tends to support the s�-pairing state where the gap
functions on the two Fermi-surface sheets have opposite
sign.

Crucial for all scenarios based on interband scattering is
that states ���,k� on one Fermi surface are coupled to states
��M,k+Q� on another Fermi surface and vice versa. The natu-
ral starting point to describe electron-electron interactions in
transition metals is however not in terms of bands but rather
in terms of local orbitals �a�. Here a=xz, yz, xy, x2−y2, and
3z2−r2 refers to the Fe-3d orbitals, with intra- and interor-
bital direct Coulomb interactions, U and U�, as well as
Hund’s rule coupling JH and interorbital pair hopping J�. The
importance of orbital effects in the iron pnictides was also
stressed in Ref. 14. As we will see below, the dominant ef-
fective spin-fluctuation-induced pairing interaction in a mul-
tiorbital system is of the pair-hopping form,

Hpair = �
k,k�;a,b

Wk,k�
ab dka↑

† d−ka↓
† d−k�b↓dk�b↑. �1�

A pair of electrons in orbital b is scattered into a pair in
orbital a. For a=b we consider intraorbital pairing interac-
tions, while a�b corresponds to an interorbital pairing in-
teraction. In both cases, Cooper pairs are predominantly
made up of electrons in the same orbital: �d−ka↓dka↑��0. In

the band picture this yields the interband pairing interaction,

Wk,k�
�,M � �

ab

���,k�a�2Wk,k�
ab �b��M,k��

2. �2�

The dominant momentum transfer in the spin-fluctuation ap-
proach is of course k−k�=Q. It is interesting to observe that
electronic structure calculations show that ���,k� and
��M,k+Q� are often dominated by different orbitals. For ex-
ample, if �xz ���,k� is large, it holds that �xz ��M,k+Q� for the
same k is small, while �xy ��M,k+Q� might be large. In Fig.
1�a� we illustrate this effect where distinct colors refer to the
dominant orbitals on the Fermi surface. We used the tight-
binding parametrization of the five-band model of Ref. 13,
where a similar plot was presented. The three dominant or-
bitals on the Fermi surface are xz, yz, and xy. Connecting a
Fermi-surface point by Q= �� ,0� or �0,�� leads in most
cases to a different orbital. Thus, the orbital composition of
the wave function at the Fermi surface frustrates intraorbital
pairing. In other words, interband scattering of spin fluctua-
tions between the same orbitals ��Wk,k�

aa � provides a less ef-
ficient pairing glue if compared to interorbital scattering
�Wk,k�

ab �a�b� of equal size. It is crucial to determine under
what conditions collective paramagnons with strong interor-
bital pair hopping exist.

In this Rapid Communication we solve the two-orbital
many-body problem in the superconducting state for varying
intraorbital �U� and interorbital �U� ,J�JH=J�� couplings
within the self-consistent fluctuation exchange �FLEX�
approximation.15 We obtain superconductivity with s� pair-
ing. The superconducting order parameter is determined self-
consistently and vanishes at Tc�80 K. We demonstrate that
strong collective interorbital spin fluctuations are efficient to
increase superconductivity. To solve the FLEX equation on
the imaginary frequency axis for a lattice of N=32�32 sites
and at temperatures as low as T�10 K we require
213=8192 Matsubara frequencies. At the moment, this re-
stricts our analysis to consider only two orbitals. In Fig. 1�b�
we show the Fermi surface of a two-band model with dxz and
dyz orbitals. The mentioned frustration of intraorbital pairing
is less pronounced for this simplified model. Yet, the phase
space for interorbital pairing interactions is still larger com-
pared to intraorbital interactions.

The model. We consider the Hamiltonian
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H = �
k,ab,�

�k
abdka�

† dkb� − JH �
i,a	b

	2sia · sib +
1

2
nianib


+ U�
i,a

nia↑nia↓ + U� �
i,a	b

nianib + J� �
i,a�b

bia
† bib, �3�

where nia�=dia�
† dia� is the occupation of the orbital a with

spin � at site i and nia=��nia�. sia= 1
2����dia�

† ����dia��
is the electron spin and bia

† =dia↑
† dia↓

† is the pair creation
operator, respectively. For the tight-binding band
structure we use �k

xy =�k
yx=−4t4 sin kx sin ky and

�k
aa=−2t1 cos ka−2t2 cos kā−4t3 cos kx cos ky −
, where

a=x�y� stands for xz�yz� orbital as well as the momentum
coordinate with x̄=y and ȳ=x. We use t1=−0.33 eV,
t2=0.385 eV, t3=−0.234 eV, and t4=−0.26 eV of Ref. 12.
Our results were obtained for a filling of n=1.88 electrons
per site, corresponding to moderate hole doping. The filling
of a subset of bands is primarily determined to reproduce
realistic Fermi-surface geometries and yields commensurate
magnetic fluctuations.

The multiorbital fluctuation exchange approach. The
FLEX equations for a multiorbital problem are given in Ref.
16. In the normal state one obtains the single-particle self-
energy �k

ab which yields the single-particle propagator Gk
ab.

Here k= �k , i�n� stands for the momentum vector k and the
Matsubara frequency �n= �2n+1��T with temperature T. We
summarize the key equations that occur in the superconduct-
ing state and determine the anomalous self energy,


k
ab = �

k�
�
cd

�k−k�
ac,dbFk�

cd. �4�

This equation is the strong coupling version of the gap equa-
tion. �k¯ = T

N�k,n¯ stands for the summation over mo-
menta and Matsubara frequencies. Fk

ab is the anomalous
Green’s function, which determines the Cooper pair expec-
tation value �dka↑d−kb↓�=T�nFk

ab. Furthermore, �q
ac,db is the

dynamic pairing interaction that depends on momentum, fre-
quency, and orbital states involved, where q= �q , i�n� with
�n=2n�T. Introducing the two-particle quantum numbers
A= �a ,c� and B= �d ,b� that label the rows and columns of
two-particle states, the interaction, �q

A,B=�q
ac,db becomes a

m2�m2-dimensional symmetric operator �̂q, where m is the
number of orbitals. It is now straightforward to sum particle-
hole ladder and bubble diagrams. It follows that

�̂q =
3

2
V̂s,q +

1

2
V̂c,q + V̂HF, �5�

where interactions in the spin and charge channels are

V̂s�c�,q = � Ûs�c��1 � �̂s�c�,qÛs�c��−1�̂s�c�,qÛs�c�

−
1

4
Ûs�c���̂s,q − �̂c,q�Ûs�c�. �6�

Ûs and Ûc are also m2�m2-dimensional matrices of the
interaction in the spin and charge channel, respectively.
Close to a magnetic instability, the dominant contribution to

�̂q comes from the spin channel V̂s,q due to the Stoner en-

hancement �1− �̂s,qÛs�−1. The interaction matrix in the spin
sector is given by Us

aa,aa=U, as well as Us
ab,ab=U�, Us

ab,ba

=J�, and Us
aa,bb=JH if a�b. The Hartree-Fock contribution

V̂HF= �Ûs+ Ûc� /2 is suppressing superconductivity, an effect
caused by the repulsive direct Coulomb interaction. We find
that the impact of direct Coulomb interaction is strongly re-
duced in the s� state with small, but finite, average �dia↑dia↓�
for local Cooper pairing. For a discussion of this Coulomb
avoidance see Ref. 17. Finally, the irreducible particle-hole
bubble �̂s�c�,q is determined by normal and anomalous
Green’s functions: �s�c�,q

ab,cd =−�k�Gk+q
ac Gk

db�Fk+q
ad Fk

cb��, assum-
ing time-reversal invariance and singlet pairing. We solved
the set of coupled FLEX equations self-consistently in the
superconducting state.

The pairing state and its T dependence. The momentum
dependence of the anomalous self energy 
k

aa is shown in the
insets of Figs. 3 and 4. The symmetry of 
k

ab and that of the
Hamiltonian are the same, corresponding to s-wave
pairing.12 Nevertheless, the sign of 
k

aa is opposite on Fermi-
surface sheets around � and M; i.e., we obtain the s�-pairing
state that was proposed in Ref. 3. While in general such a
state can have nodes of the gap on the Fermi surface, our
solution corresponds to a fully gapped state. For a recent
discussion of the s� state see Ref. 17. In Fig. 2 we show the
temperature dependence of the anomalous self-energy 
k=0

xx ,
which is proportional to the superconducting order param-
eter. The feedback of the opening of a pairing gap onto the
dynamic pairing interaction leads to the rather rapid growth
of the order parameter below Tc.

18 Tc�80 K is indeed of the
correct order of magnitude. In the normal state the dynamics
of paramagnons is overdamped �Q,�

aa,aa��1+ ��� /�s�−1. For

(a) (b)

FIG. 1. �Color online� Fermi surface of the �a�
five-orbital and �b� two-orbital tight-binding
model of the Fe-3d states in the unfolded Bril-
louin zone �one iron atom per unit cell�. Colors
indicate the dominant orbital that contributes to
the bands: xz �orange/gray�, yz �blue/dark gray�,
and xy �yellow/light gray�. The antiferromagnetic
vector Q= �� ,0� mostly connects states domi-
nated by different orbitals. The tight-binding pa-
rameters are from Ref. 13 for panel �a� and Ref.
12 for panel �b�.
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the parameters of Fig. 2 we find that �s�Tc�=37 meV. This
energy scale is reduced compared to the typical electronic
energies because of the Stoner enhancement. It sets the scale
for the Lorentzian line shape of inelastic neutron scattering at
Q above Tc. A strong pairing interaction is caused by a sig-
nificant Stoner enhancement, which is controlled by the
value of the magnetic interorbital coupling, J. This is dem-
onstrated in the inset of Fig. 2 where we show the sensitivity
of superconducting order with respect to J at T=60 K.

Intraorbital versus interorbital pairing: For the pnictides,

the pairing vertex �̂q in Eq. �4� is dominated by a few matrix
elements. We find that �s,q

A,B at q�Q has comparable
diagonal elements �d and somewhat smaller counterdiagonal
elements �d̄ in two-particle space, while all other matrix

elements are negligible. It then follows from Eq. �6� that

the dominant matrix elements of �̂q are �q
ab,ba. If one

interprets �q
ab,ba as effective low energy interaction, the

combination of orbital indices yields precisely the
pair-hopping form �Eq. �1�
 with Wk,k�

ab =�k−k�
ab,ba. The

effective Stoner enhancements for same orbitals a=b are
�q

aa,aa��U+JH��1− �U+JH���d+�d̄�
−1 while a�b follows
�q

ab,ba��U�+J���1− �U�+J����d+�d̄�
−1. Whenever U is sig-
nificantly larger than the other couplings, Eq. �4� is domi-
nated by interactions within the same orbital. As mentioned,
the intraorbital pairing interaction is however rather ineffi-
cient. The situation changes when we consider comparable
values for the intra- and interorbital Coulomb enhancements:
U+JH�U�+J�, i.e., a regime with strong orbital fluctua-
tions. The pairing interaction is enhanced as the nature of the
wave functions on the Fermi surface can efficiently take ad-
vantage of coupling between distinct orbitals �see Eq. �2� and
Fig. 1
.

The condition U+JH�U�+J� is at variance with the re-
lations U=U�+2J and J�=JH that result from the rotational
symmetry of the bare Coulomb interaction,19 if combined
with evidence for sizable Hund coupling.20,21 We stress how-
ever that the interaction parameters that enter an approximate
theory such as FLEX are not identical to the bare Coulomb
matrix elements.22 FLEX ignores crucial vertex corrections,
and U, U�, and J should rather be considered low energy
interaction parameters that have been renormalized by high
energy excitations. Performing a renormalization of the Cou-
lomb interactions within a multiband version of the
Kanamori scattering matrix approach,23 we indeed find that
U+JH�U�+J� for realistic values of the bare Coulomb ma-
trix elements of Fe.24 In this approach, particle-particle exci-
tations couple states with k and −k, i.e., states of same or-
bital nature. This reduces U more strongly than U�, JH, and
J�. Thus, constraints due to rotational invariance do not ap-
ply for low energy vertices that enter FLEX, and intraorbital
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FIG. 2. �Color online� Temperature dependence of the anoma-
lous self-energy 
k=0,�T

xx proportional to the superconducting order
parameter for U=1.5 eV, U�=1.2 eV, and J=0.8 eV. The inset
shows the increase in 
k

xx with increasing interorbital coupling J at
T=60 K.
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FIG. 3. �Color online� Intraorbital and interorbital pairing inter-
actions at zero frequency as function of momentum for
U=1.5 eV, U�=1 eV, and J=1 eV at a temperature of T=70 K
along with the self-consistently determined anomalous self energy

k,�T

xx �inset� that determines the sign and momentum dependence
of the superconducting gap. The pairing interaction is peaked for
momenta Q= �� ,0� and �0,��. The anomalous self-energy corre-
sponds to s� pairing with opposite sign of the gap on Fermi-surface
sheets around � and M. Interorbital pairing is significantly smaller.
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FIG. 4. �Color online� Same as Fig. 3 but for parameters
U=U�=1.5 eV and J=1 eV with same temperature T=70 K.
Now intra- and interorbital couplings are of comparable size lead-
ing to the same superconducting order parameter as for Fig. 3 how-
ever for much smaller pairing strength, associated with moderate
antiferromagnetic fluctuations �see the different scale compared to
Fig. 3�.
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and interorbital pairing interactions can easily be compa-
rable. The underlying low density expansion makes the Kan-
amori scattering matrix renormalization a very sensible ap-
proach for the pnictides, given their near semimetallic
electronic structure.

In Figs. 3 and 4 we compare two different parameter sets
that yield almost the same value for 
k

aa at the same tem-
perature. The first case has a predominant intraorbital inter-
action which needs to be very large in order to achieve pair-
ing. In the other case the same pairing amplitude is obtained
from intra- and interorbital pairing interactions. �q

ab,ba in Fig.
4 are almost one-fifth of the pure intraband interaction in Fig.
3, demonstrating the efficient role played by interorbital
magnetic pairing interactions in the iron pnictides.

In summary we presented a self-consistent FLEX analysis
of a two-orbital model of the FeAs systems in the supercon-
ducting state. We determined the temperature dependence of
the superconducting order parameter and showed that
Tc�60–80 K, on the order of the experimental values, are
clearly possible. The pairing state is s� with opposite sign of

the gap on Fermi-surface sheets around � and M.3 In the iron
pnictides, states that are coupled by the antiferromagnetic
wave vector are often dominated by different local Fe-3d
orbitals. This makes a purely intraorbital pairing interaction
quite inefficient. Interorbital pairing due to antiferromagnetic
fluctuations yields the same pairing amplitude for much
smaller Stoner enhancement, i.e., for more moderate values
of the magnetic correlation length. We expect this effect to
be even stronger in a more realistic five-orbital description of
the iron pnictides. Collective low energy pairing interaction
between like and unlike orbitals, i.e., strong orbital fluctua-
tions, significantly enhances the viability of the spin-
fluctuation approach for superconductivity in the pnictides.
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